
Heuristic Search Replanning with Regressed Goal Descriptions

Sandeep Kumar and Deepak Khemani
AIDB Lab, Department of CS&E,

Indian Institute of Technology Madras,
Chennai, India.

sandeep@cse.iitm.ac.in, khemani@iitm.ac.in

Abstract

Plans often fail during execution in the real world. This may
happen if the world has changed in the intervening period and
some actions are no longer applicable. Often it is desirable to
salvage the failed plan as much as possible. This reason is not
just computational efficiency, but it may also help in main-
taining commitments to resources already made. This paper
describes an approach using state-space search for reaching a
state from which the failed plan can be taken up again. The al-
gorithm employs the planning-graph based reachability anal-
ysis to compute the heuristic value of a state with respect to a
set of goal descriptions and carry out the search effectively.

Introduction
An agent operating in real-world is often required to have
replanning ability. While executing a plan external events
may take place, and the agent may find itself in an unex-
pected state where the old plan is no longer applicable. For
example, a robot agent may discover an object to be in a
place different from the one expected. But the rest of the
world may be unchanged. In such a scenario it is not only
desirable to find a new plan quickly, but also to use the old
plan as much as possible for maintaining commitments al-
ready made to resources.

Apart from just being able to handle unknown external
events, the success of FF-Replan (Yoon, Fern, and Givan
2007) has shown replanning to be a very effective approach
for dealing with probabilistic planning problems. FF-Replan
first constructs a deterministic version of the planning prob-
lem and then calls FF (Hoffmann and Nebel 2001) to gen-
erate plan for the deterministic problem. If the plan fails it
again calls FF to generate a new plan to the goal taking the
unexpected state as the new initial state. We must point out
here that FF-Replan does not attempt to reuse the old plan
while replanning.

In the worst case replanning has been shown to be no more
efficient than planning from scratch (Nebel and Koehler
1995). But in many practical situations we expect that the
exogenous events modify the world only to a small degree.
Replanning should aim to exploit this fact and try to use a
part of the old plan and save on unnecessary computation. In
general such systems require a base planning method which
computes a sub plan for dealing with the failure.

Heuristic search has enjoyed considerable success in
planning. Much of this success can be attributed to the
development of strong domain independent heuristics us-
ing planning-graph based reachability analysis (Bryce and
Kambhampati 2007). The replanner RHS (Replanner us-
ing Heuristic Search) described in this paper uses state-space
heuristic search paradigm for replanning. It is based on the
FF style planning (Hoffmann and Nebel 2001) and can solve
replanning problems in STRIPS style domains.

RHS first constructs a set of goal descriptions from the
old plan. The goal descriptions correspond to the states that
the original plan would have gone through if it had not been
disrupted. Once this set is ready, FF is used to search for a
plan to reach one of the regressed goal descriptions. The key
point of the search is that it is performed with respect to a
set of goal descriptions instead of just one. Ideally, during
search, when evaluating a state we would like to compute the
heuristic distance with respect to each goal description and
select the minimum as its heuristic value. But this is com-
putationally very expensive. To overcome this difficulty we
compute the heuristic estimate of a state only with respect
to the goal description appearing first in the relaxed plan-
ning graph. This is based on the assumption that it will be
close to the minimum estimate. Once an intermediate goal
description is reached, and a plan to it found, the remaining
actions are added from the old plan.

The main contribution of this paper is to show how state-
space heuristic search using planning-graph based reacha-
bility analysis can be used effectively to solve replanning
problems.

The next two sections discusses the related work and the
basic definitions and notations. The following section de-
scribes how FF computes its heuristic using the relaxed plan-
ning graph. Then the process of constructing the goal de-
scriptions set using the idea of plan annotation from execu-
tion monitoring systems is explained. Following this we dis-
cuss the process of replanning using the state-space search.
Finally after presenting the experimental results we end with
future work and conclusions.

Related Work
State-space heuristic search has been used in the replan-
ning system SHERPA (Koenig, Furcy, and Bauer 2002).
SHERPA uses Lifelong Planning A* to find new optimal

plans quickly. The algorithm was designed for robot path
(re)planning problems and focuses on changes in the edge
weights (action cost). It does not consider changes in the
state while RHS can handle random changes in the current
state while replanning.

SimPlanner (Onaindia et al. 2001) is another replanning
system. It first computes a set of possible reachable states
by a process similar to plan annotation (Fritz and McIlraith
2007). Then it selects one of these intermediate states as a
goal. In the final step it constructs a plan to reach the inter-
mediate state and appends to it the plan from that state to the
goal state. The selection of the intermediate state is based
on heuristic evaluation and may not always be optimal. This
new goal selection in SimPlanner is done prior to replanning
and is fixed henceforth. And replanning can be done by us-
ing any of the standard techniques to plan. While in RHS
all the potential goals are evaluated at each point during the
search and also it is strictly based on forward state-space
search planing using relaxed planning-graph heuristic.

Other recent replanning systems have used partial-order
planning (Krogt and Weerdt 2005) and planning-graph
based techniques (Gerevini and Serina 2000). This makes
them different from RHS in the fundamental paradigm of
planning.

FF-Replan is the closest replanning system to RHS, using
FF as the central planning system. But as pointed out ear-
lier FF-Replan replans from scratch every time a plan fails.
Hence RHS can make FF-Replan much more efficient, as it
takes into account the old plan during replanning.

Background
The simple STRIPS planning problem is defined as follows:
Definition 1 (State): A state is defined as a set of logical
atoms.

Definition 2 (Action): An action a is a triple

a = (pre(a), add(a), del(a))

where pre(a) are the preconditions of a, add(a) are the add
effects and del(a) are the delete effects, each being a set of
atoms.

An action is applicable in a state S if pre(a) ⊆ S. The
result of applying an action on a state S is defined as

S ∪ add(a)\del(a)

Definition 3 (Planning Problem): A planning problem
Π = (A, I, g) is a triple where A is the set of actions, I
is the initial state and g is a set of goal atoms.

Definition 4 (Plan): Given a planning problem Π =
(A, I, g) a plan π = [a1, a2,an] is a sequence of actions
which changes I to a state S such that g ⊆ S.

RPG Heuristic
A common approach while deriving a heuristic for a prob-
lem is to relax it to a simpler form, and solve it efficiently. FF
uses relaxed planning graph to compute the heuristic value
for a state S in the following way.

First all the delete effects of the actions are ignored, this
accounts for the relaxation of the problem. Then a planning
graph is build until all the goal-atoms are reached. The graph
consists of alternating fact and action layers. The first fact
layer is same as the state S. The first action layer contains
all actions applicable in S. The union of all add effects of
actions in the action layer along with the facts of the first
fact layer forms the second fact layer. The next action layer
is set of all applicable actions in this fact layer. This process
of constructing fact and action layers is continued, until a
fact layer containing all the goal atoms is reached. The next
step is to extract a relaxed plan. To do so, start at the last
fact layer m, considering all goal-atoms. At each fact layer
i if the goal is the layer i − 1, then insert it into the goals
to be achieved at i − 1. For other goals select an action in
action layer i − 1 that adds that goal and insert the action’s
preconditions into the goals at i − 1. Once all the goal-
atoms at fact layer i are finished, continue the same process
with goal-atoms at i − 1 until the first fact layer is reached.
The process results in a relaxed plan < A0, A1,Am−1 >
where, each Ai is the set of actions selected from the action
layer i. The length of the solution is estimated by counting
the actions in the plan.

hFF (s) =

m−1∑
i=0

|Ai|

Generating Goal Descriptions
Execution monitoring and replanning systems together form
a general strategy for dealing with a dynamic world (Russell
and Norvig 2003). It is the function of execution monitoring
module to decide when replanning is necessary. A common
approach among execution monitoring systems is to anno-
tate plans with conditions to be checked at the time of exe-
cution, for example PLANEX1 (Fikes 1971). The strategy
of PLANEX1 is to find a goal description (kernel) from the
annotated plan that is true in the current state of execution.
Then the action corresponding to the matched goal descrip-
tion is executed. If none of the goal descriptions match the
current execution state, STRIPS (Fikes and Nilsson 1971) is
called to find a new plan.

We use the concept of plan annotation for replanning. If
there is a plan failure the replanning algorithm tries to get
back to a state in the old plan as soon as possible. This means
that any of the state from the old plan can now serve as a goal
state. As a goal description represents a set of states where
the goal atoms are true, generating new goal descriptions
increases the total number of goal states. The process of
regressing the goal description removes all the unnecessary
information (logical atoms) from the state sequence which
produced the plan. The work of (Fritz and McIlraith 2007)
formalizes plan annotation by regressing goal over actions
of a plan in situation calculus. We follow the same approach
while generating goal descriptions for problems in STRIPS
style specification.

Given a sequential plan πold = [a1, a2, a3.....an] and a
goal description gn, the corresponding set of goal descrip-
tions is computed as follows:

gi−1 = [gi − add(ai)] ∪ pre(ai) ∀ai ∈ πold

Using the above formula we get a set of goal descriptions
G = {g0, g1, g2.....gn}.

Replanning
The replanning algorithm uses the heuristic forward state-
space search algorithm as its basis. The key points of in-
terest are the termination condition for search and heuristic
evaluation of a state.

Termination of Search
The search terminates successfully at a state S when the fol-
lowing condition is found to be true:

∃gi ∈ G such that gi ⊆ S

In cases where more than one gi is found the one closer to
the goal gn is preferred. Once the search terminates, the next
task is to construct the new plan. This step is carried out by
adding the remaining actions from the old plan. Let gi be
the goal description achieved and πnew be the plan found for
achieving it. The complete plan to gn is found by updating
πnew as follows:

πnew ← append(πnew, [ai+1, ai+2, ai+3.....an])

Heuristic Computation
The heuristic function is a key deciding factor that deter-
mines performance in a search algorithm. It is meant to give
an approximate measure of the distance of a state from a
goal. But while replanning in RHS we wish to compute the
approximate distance of a state with respect to the set of goal
descriptions G.

Let the heuristic value of a state S with respect to a goal
description be given by the function h(s, gi). A simple strat-
egy to evaluate S against G is to take:

h∗(s) = min[h(s, gi)] ∀gi ∈ G.

Computing each h(s, gi) for getting h∗(s) can be expensive,
as h(s) is needed at each step in the search. Here a careful
design of the heuristic function can significantly cut down
the computing cost.

The replanning algorithm uses relaxed planning graph for
computing the heuristic value of a state, in a way similar
to the planner FF. FF uses the reachability analysis for esti-
mating the distance to a goal. While replanning reachability
analysis can be used for dual purpose one to judge which of
the goal descriptions may be nearest to the current state and
other to estimate the heuristic distance to that goal descrip-
tion.

Let us redefine the heuristic function of FF as hFF (s, gi)
i.e. hFF (s) with respect to the goal description gi. To com-
pute the heuristic h(s) the replanning algorithm first builds
up the relaxed planning graph to a fact layer P ∗, until the
following is found to be true:

∃g∗i ∈ G such that g∗i ⊆ P ∗

Once the relaxed planning graph is built and the goal de-
scription g∗i is found. The heuristic value is taken as the
length of the relaxed plan to g∗i . We can define the heuristic

Figure 1: Illustration of hRHS(s) ≈ h∗(s). The dotted
lines represent the actions in the old plan πold and the corre-
sponding nodes are the generated goal descriptions G. Each
line from current state to the goal description represents the
heuristic estimate h(s, gi).

as hRHS(s) = hFF (s, g∗i). This is based on the assumption
that hRHS(s) ≈ h∗(s).

The assumption that the first goal description appearing
in the relaxed planning graph is the one which will lead to
the minimum heuristic value makes the computation much
simpler. Though this may not always be the case, but as
we see in figure 1 it is not a bad choice while computing
the heuristic. Figure 1 shows the goal description g∗i first
appears in the relaxed planning graph built from the current
state. At this point we estimate the heuristic hFF (s, g∗i). For
example in figure 1 if we calculate h∗(s) by computing all
h(s, gi) we will find it to be the same as hFF (s, g∗i).

High Level Description of the Overall
Algorithm

Input: A plan πold (for a planning problem Πold). A new
planning problem Πnew (differing form Πold only in initial
state)
Output: A new plan πnew or fail.

1. Generate the set of goal descriptions G using.

gi−1 = [gi − add(ai)] ∪ pre(ai) ∀ai ∈ πold

2. Perform,

πnew ← FFSearch(newInitialState)

using Terminal Condition:

∃gi ∈ G such that gi ⊆ S

and Heuristic Function:

hRHS(s)

3. If πnew = null return fail.

4. Else Return

πnew ← append(πnew, [ai+1, ai+2, ai+3.....an])

Experimental Results
We now present the empirical evaluation of our replanning
approach. The focus of the experiments is on showing the
effectiveness of RHS for solving replanning problems in
the forward state space search planning paradigm. As the
replanning algorithm builds on FF style planning, JavaFF
(Coles et al. 2008) was used as the base planner to imple-
ment the replanning system. We used the GPG (Gerevini
and Serina 2000) benchmark problem set. The same bench-
mark has also been used to evaluate the POPR system (Krogt
and Weerdt 2005). The replanning problems are from the
commonly used gripper, logistics and rocket domains. The
problem set comprises of seven planning problems (two
gripper, three logistics and two rocket). The replanning
problems are modeled as a variation in the initial and final
state of a planning problem. We used hundred replanning
problems from the problem set to evaluate our work. The
other problems were unsuitable as they made changes to the
goal state, which our algorithm does not cater to.

The problems grip10 and grip12 are from the gripper do-
main and each has 10 replanning problems associated with
it. Similarly loga, logb, logc are from the logistics domain
and have 20 replanning problems derived from each one.
And the problems roca and rocb are from rocket domain
also having 10 replanning problems each associated with
them.

The replanning system RHS is evaluated against the com-
putational effort of planning from scratch. This is commonly
described in terms of the percentage savings. If x and y are
the computational efforts required for replanning and plan-
ning from scratch respectively, then the percentage savings
is defined as 100(y−x)/y (Hans and Weld 1995). The same
measure is also used to evaluate SHERPA. In our case the
replanning effort x and the planning effort y are measured
in terms of the time taken to solve the problems. Since the
replanning algorithm is implemented using JavaFF, for eval-
uation purpose we used JavaFF to plan from scratch as well.

The execution times for all the 100 replanning problems
have been averaged over 5 trial runs. Figure 2 shows the
percentage savings across the different planning problems.
Each value in the figure is computed from the average exe-
cution times of the replanning problems associated with it.
The average execution time of the seven planning problems
during planning and replanning is shown in figure 3. The
savings percentage in problem grip10 is not significant as
the planning time is itself very low for replanning to make
any notable improvement. In problem logc we observe that
the average planning time is quite high and hence we get
a good savings percentage. From figure 3 we also observe
that the variation in planning time across problems is much
larger than variation in replanning time.

The experiments show that in general replanning using
heuristic forward state-space search can be much faster than
planning from scratch. The replanning algorithm on an aver-
age gives more than 75 percent savings, occasionally cross-
ing 90. The overall average planning time of all 100 prob-
lems is 2.34 seconds and replanning time is 0.27 sec. The
planning time is 8.67 times larger than the replanning time.

Figure 2: Average savings percentage across planning prob-
lems.

Figure 3: Average running time across planning problems.

Future Work
In this paper we have only considered domains with unit ac-
tion cost. In future we plan to adapt the algorithm for actions
with variable costs. We also plan to implement triangle ta-
bles (Fikes 1971) to improve efficiency. Triangle tables help
to skip unnecessary comparisons while deciding if a goal
description is met, during search and heuristic computation.

In this work we have used the relaxed planning graph for
first selecting a goal description and then finding the heuris-
tic value with respect to the selected goal, at each stage. As
mentioned before this is based on the assumption that the
first goal description appearing in the relaxed planning graph
is likely to be closest to the current state. This assumption
may not always be true. Hence it may be interesting to look
for efficient heuristic functions independent of such assump-
tions.

The results of FF-Replan have shown that replanning is
an effective approach for dealing with probabilistic planning

problems. In future we plan to adapt the replanning algo-
rithm to the needs of a probabilistic problem so that it can
induce a contingency plan.

Another interesting extension of this work is to explore
how effectively replanning in partial satisfaction problems
(Benton, Do, and Kambhampati 2009) can be handled by the
algorithm. The replanning algorithm will also need adapta-
tion while working with temporal planners using state space
search like CRIKEY (Coles et al. 2009).

Conclusions
Plans often fail during execution in dynamic environments.
The paper describes an approach using heuristic state-space
search for replanning in the face of plan failure. The idea
of plan annotation from execution monitoring can be used
to generate goal descriptions which can be used for re-
planning. The paper also demonstrates how planning-graph
based reachability analysis can be used as a heuristic which
can evaluate a state against a set of goal descriptions effi-
ciently. The empirical analysis of the approach shows that
replanning using heuristic search can be far better than plan-
ning from scratch. Thus if FF-Replan uses RHS as the re-
planning module, instead of planning from scratch, it will
have a gain in performance.

Acknowledgements
We thank I. Murugeswari and Bharat Ranjan Kavuluri for
the discussions and constant support during this work.

References
Benton, J.; Do, M.; and Kambhampati, S. 2009. Anytime
heuristic search for partial satisfaction planning. Artificial
Intelligence 173(5-6):562–592.
Bryce, D., and Kambhampati, S. 2007. A tutorial on plan-
ning graph based reachability heuristics. AI Magazine 28.
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008.
Teaching forward-chaining planning with javaff. In Collo-
quium on AI Education, Twenty-Third AAAI Conference on
Artificial Intelligence.
Coles, A. I.; Fox, M.; Halsey, K.; Long, D.; and Smith,
A. J. 2009. Managing concurrency in temporal planning
using planner-scheduler interaction. Artificial Intelligence
173(1):1–44.
Fikes, R., and Nilsson, N. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3-4).
Fikes, R. 1971. Monitored execution of robot plans pro-
duced by strips. IFIP Congress 71.
Fritz, C., and McIlraith, S. A. 2007. Monitoring plan opti-
mality during execution. In Proceedings of the International
Conference on Automated Planning and Scheduling.
Gerevini, A., and Serina, I. 2000. Fast plan adaptation
through planning graphs: Local and systematic search tech-
niques. In Proceedings of the International Conference on
AI Planning and Scheduling.

Hans, S., and Weld, D. 1995. A domain-independent algo-
rithm for plan adaptation. Journal of Artificial Intelligence
Research 319–360.
Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 253–302.
Koenig, S.; Furcy, D.; and Bauer, C. 2002. Heuristic search-
based replanning. In Proceedings of the International Con-
ference on AI Planning and Scheduling 294–301.
Krogt, R. V. D., and Weerdt, M. D. 2005. Plan repair as
an extension of planning. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
161–170.
Nebel, B., and Koehler, J. 1995. Plan reuse versus plan
generation: A theoretical and empirical analysis. Artificial
Intelligence 76(1-2):427–454.
Onaindia, E.; Sapena, O.; Sebastia, L.; and Marzal, E. 2001.
Simplanner: An execution-monitoring system for replan-
ning in dynamic worlds. In Proceedings of the EPIA 393–
400.
Russell, S. J., and Norvig, P. 2003. Artificial intelligence: A
Modern Approach. Prentice-Hall, Inc.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. Ff-replan:
A baseline for probabilistic planning. In Proceedings of
the International Conference on Automated Planning and
Scheduling.

